Disorder-induced pseudodiffusive transport in graphene nanoribbons
نویسندگان
چکیده
P. Dietl,1 G. Metalidis,1,2 D. Golubev,1 P. San-Jose,3 E. Prada,3 H. Schomerus,3 and G. Schön1,2 1Institut für Theoretische Festkörperphysik, Universität Karlsruhe, D-76128 Karlsruhe, Germany 2DFG Center for Functional Nanostructures (CFN), Universität Karlsruhe, 76128 Karlsruhe, Germany 3Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom Received 22 April 2009; published 13 May 2009
منابع مشابه
Spin-polarized transport through a zigzag-edge graphene flake embedded between two armchair nanoribbons electrodes
We study the coherent spin-polarized transport through a zigzag-edge graphene flake (ZGF), using Hubbard model in the nearest neighbor approximation within the framework of the Green function’s technique and Landauer formalism. The system considered consists of electrode/ (ZGF)/electrode, in which the electrodes are chosen to be armchair nanoribbons. The study was performed for two types of ele...
متن کاملConductance of T-shaped Graphene nanodevice with single disorder
Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...
متن کاملConductance of T-shaped Graphene nanodevice with single disorder
Disordered T-shaped graphene nanodevice (TGN) was designed and studied in this paper. We demonstrated the intrinsic transport properties of the TGN by using Landauer approach. Knowing the transmission probability of an electron the current through the system is obtained using Landauer-Buttiker formalism. The effects of single disorder on conductance, current and on the transport length scales a...
متن کاملDisorder-induced gap behavior in graphene nanoribbons
We study the transport properties of graphene nanoribbons of standardized 30 nm width and varying lengths. We find that the extent of the gap observed in transport as a function of Fermi energy in these ribbons the “transport gap” does not have a strong dependence on ribbon length, while the extent of the gap as a function of source-drain voltage the “source-drain gap” increases with increasing...
متن کاملDensity inhomogeneity driven percolation metal-insulator transition and dimensional crossover in graphene nanoribbons.
Transport in graphene nanoribbons with an energy gap in the spectrum is considered in the presence of random charged impurity centers. At low carrier density, we predict and establish that the system exhibits a density inhomogeneity driven two dimensional metal-insulator transition that is in the percolation universality class. For very narrow graphene nanoribbons (with widths smaller than the ...
متن کامل